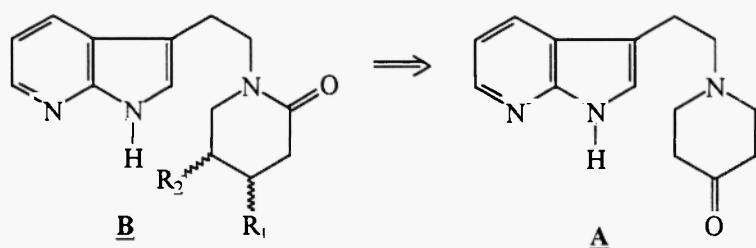


SYNTHESIS OF 4,5-DISUBSTITUTED-2-PIPERIDINONES FROM 4-PIPERIDINONES.

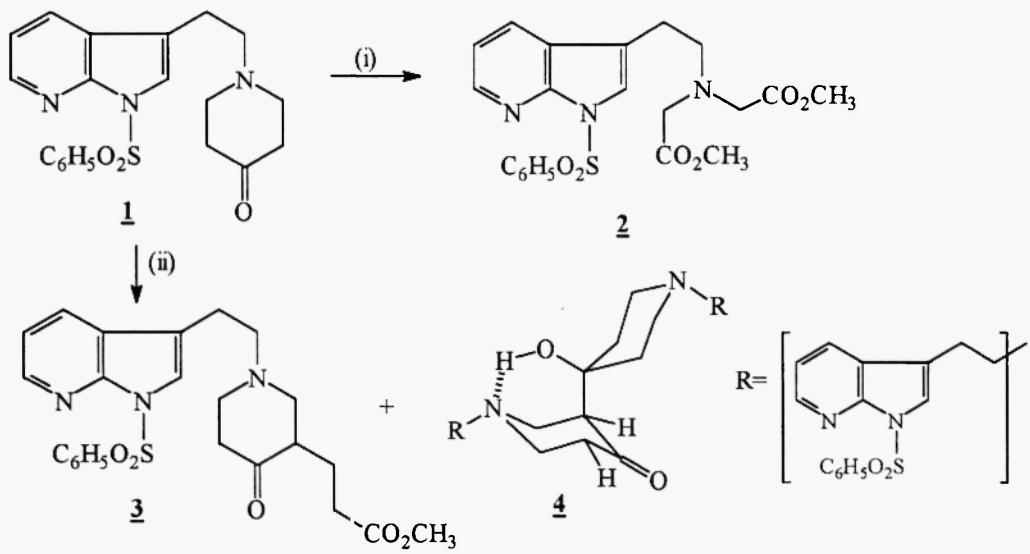
Mohammed Hichour,¹ Yves Blache*,¹ Olivier Chavignon,² Jean-Claude Teulade,² and Jean-Pierre Chapat¹

¹Laboratoire de Chimie Organique Pharmaceutique, 15 Avenue Charles Flahault, Faculte de Pharmacie, 34000 Montpellier.

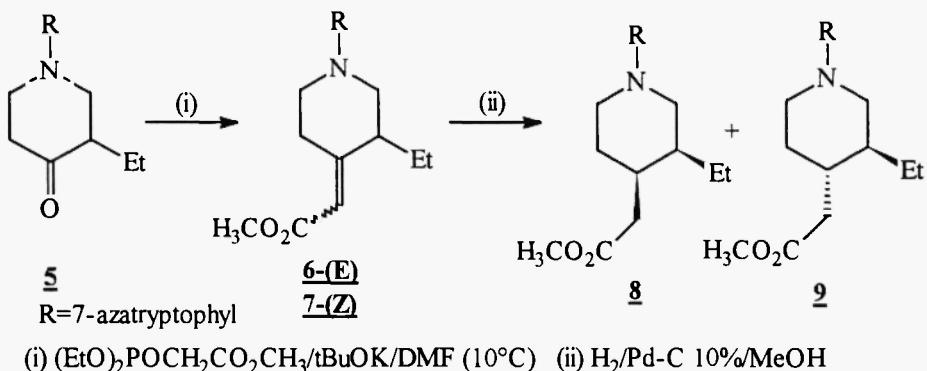

²Laboratoire de Chimie Organique Pharmaceutique, Groupe de Recherche en Pharmacochimie.

UFR de Pharmacie, 28 Place Henry Dunant, B.P. 38, 63001 Clermont-Ferrand.

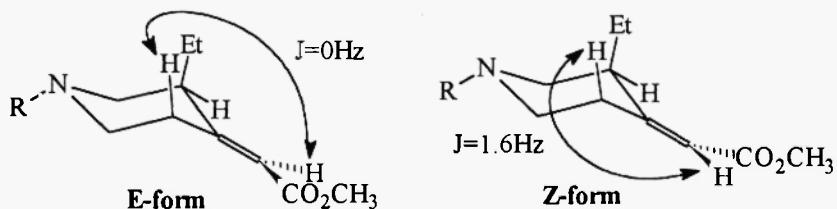
Abstract- A general method for the synthesis of 4,5-disubstituted-2-piperidinones as suitable synthons for the elaboration of analogs of corynantheidine and dihydrocorynantheine alkaloids is described from 4-piperidinones as starting material.


During a course of a recent project concerning the synthesis of 11-azaindoloquinolizidines disubstituted on the 2 and 3 positions, we required several 4,5-disubstituted-2-piperidinone (**B**) as suitable synthons. Several methods exist for the synthesis of indolo or benzoquinolizidines from a 3,4-disubstituted piperidine, by cyclization through a lead tetracetate oxydation (Fuji procedure) (1) or through a modified Polonovski reaction (2). However, such methods were ineffective in the 7-azaindolic series (3), no more than the use of an O-lactim ether obtained from a 4,5-disubstituted-2-oxopiperidine (4). In this context, we had to find a general strategy for the obtention of 11-azaindoloquinolizidines. Our approach consists in the transformation of 1-(azatryptophyl)-4-piperidinone (**A**) into 4,5-disubstituted-2-piperidinone (**B**) which can be further submitted to Bischler-Napieralsky cyclizations (5). In this paper, we describe the synthesis and the stereochemistry of such lactams obtained by a modified "Fuji procedure".

Scheme 1

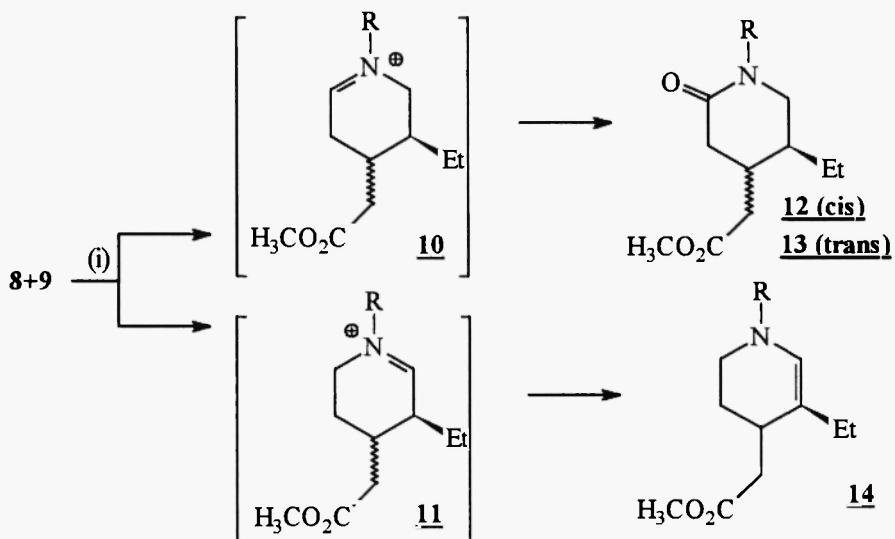

In this context, our first consideration, was to find a general method of alkylation of 4-piperidinone 1 (6). Treatment of this last with LiHMDS at -78°C in THF followed by addition of ethyl iodide did not give any results; change of the base (LDA) or the use of a silylated enol ether were no more effective. From these observations, we investigated over electrophilic species. Using methyl bromoacetate led exclusively to compound 2 through a retro-Michael type reaction. Structure of 2 was easily determined by ¹H-nmr with two singlet at δ 3.58 (4H) and 3.67 (6H) attributed to the methoxycarbonyl groups. Using methyl bromopropionate, the result was quite different, and we obtained the desired alkylated derivative 3 as the minor product (5%), admixed with 1-[2-(1-phenylsulfonylpyrrolo[2,3-*b*]pyridin-3-yl)ethyl]-3-[1-[2-(1-phenylsulfonyl-pyrrolo[2,3-*b*]pyridin-3-yl)ethyl-4-hydroxypiperidin-4-yl]-4-piperidone 4, resulting of an aldol condensation, as the major product (scheme 2).

Scheme 2


Structural determination of **4** was realized by mass spectrometry which indicated a M^+ peak at $m/z = 767$ and by nmr studies (2D COSY ^1H - ^1H and ^1H - ^{13}C) (7). The conformation of the piperidinone ring having the 3-substituant on an axial position is stabilized by the N-H interaction (8) and well confirmed by the observation of the 2D-COSY ^1H - ^1H spectra which showed a "W" long range coupling between H-3_{eq} and H-5_{eq} (9). Finally our required 1-(7-aza tryptophyl-2-yl)-3-ethyl-4-piperidinone **5** was obtained by condensation of 3-ethyl-4-piperidinone (10) with 7-aza-(2-bromoethyl)indole (11) according to our published method (6). Treatment of **5** with methyl diethylphosphonoacetate and potassium tertiobutylate in dimethylformamide led to the diastereoisomeric mixture of methyl 1-[2-(1H-pyrrolo[2,3-*b*]pyridin-3-yl)ethyl]-3-ethylpiperidine - $\Delta^{4,\alpha}$ -acetates (**E**)-**6**/**(Z**)-**7** in a 3.5/1 ratio (12) (scheme 3).

Scheme 3

Determination of the structure of the two isomers was made evident by ^1H and ^{13}C -nmr. ^{13}C -nmr spectrum showed for 6 the following characteristic signals at δ 163.0 (C-4), δ 112.7 (=CH), δ 167.0 CO_2CH_3 and for 7: δ 163.5 (C-4), 114.2 (=CH), 166.8 (CO_2CH_3). ^1H -nmr spectrum showed the vinylic proton of 6 at δ 5.28 as a singlet, while the vinylic proton of 7 at δ 5.68 as a doublet with $J_{(\text{Hvin-H3ax})} = 1.6$ Hz. This coupling is only observable when the homoallylic proton is perpendicularly to the double bond plan (13). Concerning the Z-isomer 7, the vinylic proton is coupled only to one proton (H-3_{ax}), while in the E-form 6, no coupling is observed with H-5. Only an axial position for the ethyl group can explain these observations (scheme 4).


Scheme 4

Subsequent hydrogenation of the diastereoisomers 6 and 7 on a palladium support (Pd-C 10%, CH_3OH) at atmospheric pressure led to the two diastereoisomeric methyl 1-[2-(1H-pyrrolo[2,3-*b*]pyridin-3-yl)ethyl]-3-ethyl-4-piperidine acetate cis-(\pm)-8 and trans-(\pm)-9 in a 1.5/1 ratio (14). Determination of their structures was made by ^1H and ^{13}C -nmr, which showed the disparition of the insaturations, and by the apparition of two tertiary carbons at δ 37.4 and 38.4 for the C-4. Complete ^{13}C attributions of the diastereoisomers were in good agreement with those obtained by Bonjoch and coll. concerning the N-benzyl derivatives (10). Oxydation step was then investigated on compound 8,9. As treatment of the mixture, following the classical "Fujii" procedure failed to give the expected azaindoloquinolizidines, we investigated several modifications of this procedure. Best result was obtained using five equivalent of mercuric acetate ($\text{HgOAc}_2/\text{EDTA}/\text{H}_2\text{O}/\text{C}_2\text{H}_5\text{OH}$). In these conditions, regioisomeric intermediary iminium salts 10,11 formed and evolved to the formation of the two

lactams 12,13 for 10 (45% yield), while the reaction evolved to the elimination product 14 in the case of 11 (scheme 5).

Scheme 5

R=7-azatryptophyl (i) $\text{Hg}(\text{OAc})_2$,EDTA/EtOH/ H_2O

Characterization of the two lactams was made by ^{13}C -nmr (15) and by comparison with the values of litterature concerning the trans-N-benzyl and N-indolyl-5-ethyl-2-oxopiperidineacetate described by Fujii and Coll. (16). In conclusion, we have reported an efficient synthesis of diastereoisomeric lactams 12 and 13 using an adapted "Fujii procedure". Studies are now in progress for the stereoselective functionnalisation of the 3-position of the piperidinic ring.

References and notes

- (1) T. Fujii, M. Ohba, N. Sasaki, *Heterocycles*, 22, 1805, (1984). T. Fujii, M. Ohba, N. Sasaki, *Chem. Pharm. Bull.*, 37, 2822, (1989).
- (2) L. Chevolot, H.-P. Husson, P. Potier, *Tetrahedron*, 31, 2491, (1975). L. Chevolot, A. Husson, C. Kan-Fan, H.-P. Husson, P. Potier, *Bull. Soc. Chem. Fr.*, 1222, (1976).
- (3) M. Hichour, unpublished results, « These de Doctorat, Université Montpellier I: synthèse et réactivité de 1-[2-(*1H*-pyrrolo[2,3-*b*]pyridin-3-yl)ethyl]piperidines; application à la synthèse de 11-azaindoloquinolizidines » (1996)
- (4) M. Ohba, T. Ohashi, T. Fujii, *Heterocycles*, 32, 319, (1991). T. Fujii, S. Yoshifuji, K. Yamada, *Chem. Pharm. Bull.*, 26, 2071, (1978).
- (5) T. Fujii, S. Yoshifuji, H. Ito, *Heterocycles*, 7, 149, (1977).

(6) Y. Blache, M. Hichour, O. Chavignon, A. Gueiffier, J.-C. Teulade, G. Dauphin, J.-P. Chapat, *Heterocycles*, **45**, 57, (1997).

(7) compound **4**: 60 %; mp: 145-147 °C; ms (FAB⁺): 767 (61 %), 495 (24 %), 285 (41 %), 145 (100 %); ¹H-nmr (CDCl₃, 400 MHz) δ: 1.50 (m, 2H, H-3'_{eq} and H-5'_{eq}), 2.18-1.19 (m, 2H, H-3'_{ax} and H-5'_{ax}), 2.25 (m, 1H, H-3_{eq}), 2.44 (m, 1H, H-5), 2.61 (m, 2H, H-5 and H-6), 2.77 (m, 1H, H-2), 2.83 (m, 2H, Ar-CH₂CH₂), 2.88 (m, 2H, Ar-CH₂), 2.95 (m, 2H, H-6'), 3.04 (m, 1H, H-6), 3.07 (m, 2H, Ar-CH₂CH₂), 3.10 (m, 1H, H-2), 3.17 (m, 2H, H-2'), 3.25 (m, 2H, Ar-CH₂), 7.14 (m, 2H, H-5"), 7.48 (m, 8H, H-2_{ar} et H-3,4,5_{phe}), 7.80 (d, J = 8.7 Hz, 2H, H-4_{ar}), 8.13 (m, 4H, H-2,6_{ar}), 8.35 (d, J = 5.2 Hz, 2H, H-6_{ar}); ¹³C-nmr (CDCl₃, 100 MHz) δ: 23.4 and 20.5 (2C, Ar-CH₂CH₂), 33.5 and 33.2 (C-3' and C-5'), 41.5 (C-5), 48.2 and 47.9 (C-2' and C-6'), 52.4 (C-6), 54.4 (C-2), 56.2 and 56.0 (2C, Ar-CH₂CH₂), 56.7 (C-3), 68.1 (C-4'), 116.5 and 114.5 (2C, C-3_{ar}), 119.0 and 118.8 (2C, C-5_{ar}), 122.7 and 122.4 (2C, C-3a_{ar}), 123.7 (2C, C-2_{ar}), 127.9 (4C, C-2,6_{ar}), 128.6 (2C, C-4_{ar}), 129.0 (4C, C-3,5_{ar}), 134.1 and 134.0 (2C, C-4_{ar}), 138.4 and 138.3 (2C, C-1_{ar}), 145.3 and 145.0 (2C, C-6_{ar}), 147.5 and 147.4 (2C, C-7a_{ar}), 208.5 (C-4).

(8) A.J. Jones, C.P. Beeman, A.F. Casy, K.M.J. Mc Erlane, *Can. J. Chem.*, **51**, 1790, (1973).

(9) L.M. Jackman, S. Sternhell, « Application of NMR spectroscopy in Organic Chemistry », 2nd edition, Pergamon Press, Oxford, 334 (1969). S. Sternhell, *Quart Rev*, **23**, 236, (1969).

(10) J. Bonjoch, A. Linares, M. guardià, J. Bosch, *Heterocycles*, **26**, 2165, (1987), and references cited therein.

(11) G. Galvez, P. Viladoms, *J. Heterocyclic Chem.*, **21**, 421, (1984).

(12) compound **6**: 69 %; mp: 105-107 °C; ¹H-nmr (CDCl₃, 100 MHz) δ: 0.91 (t, J = 7.2 Hz, 3H, CH₂CH₃), 1.20-2.10 (m, 2H, CH₂CH₃), 2.18 (m, 1H, H-3), 2.40-2.80 (m, 5H, H-5, H-6 et H-2_{ax}), 2.80-3.50 (m, 5H, H-1', H-2' et H-2_{eq}), 3.73 (s, 3H, OCH₃), 5.67 (s, 1H, CHCO₂CH₃), 7.07 (m, 1H, H-5"), 7.24 (s, 1H, H-2"), 8.06 (dd, J = 7.8 and 1.4 Hz, 1H, H-4"), 8.32 (dd, J = 4.7 Hz and 1.4 Hz, 1H, H-6"), 12.01 (s, 1H, NH); ¹³C-nmr (CDCl₃, 25 MHz) δ: 11.8 (CH₂CH₃), 23.1 (C-2'), 24.0 (CH₂CH₃), 27.6 (C-5), 46.7 (C-3), 50.8 (OCH₃), 54.8 (C-6), 58.6 (C-2), 59.2 (C-1'), 112.4 (C-3"), 112.7 (CHCO₂Me), 114.8 (C-5"), 120.2 (C-3a"), 122.5 (C-2"), 127.1 (C-4"), 142.0 (C-6"), 149.0 (C-7a"), 163.0 (C-4), 167.0 (CO). Compound **7**: 19 %; mp: 106-108 °C; ¹H-nmr (CDCl₃, 100 MHz) δ: 0.93 (t, J = 7.2 Hz, 3H, CH₂CH₃), 1.5-1.96 (m, 2H, CH₂CH₃), 1.96-2.25 (m, 3H, H-5 et H-3), 2.45-2.78 (m, 3H, H-6 et H-2_{ax}), 2.78-3.30 (m, 5H, H-1', H-2' et H-2_{eq}), 3.69 (s, 3H, OCH₃), 5.68 (d, J_{HVinyl-H-5ax} = 1.6 Hz, 1H, =CHCO₂Me), 7.07 (m, 1H, H-5"), 7.23 (s, 1H, H-2"), 7.94 (d, J = 7.8 Hz, 1H, H-4"), 8.32 (d, J = 4.8 Hz, 1H, H-6"), 11.40 (s, 1H, NH); ¹³C-nmr (CDCl₃, 25 MHz) δ: 11.8 (CH₂CH₃), 23.1 (C-2'), 25.4 (CH₂CH₃), 33.6 (C-5), 39.0 (C-3), 50.8 (OCH₃), 55.4 (C-6), 57.3 (C-2), 58.8 (C-1'), 112.7 (C-3"),

114.2 (CHCO₂Me), 115.1 (C-5"), 120.3 (C-3a"), 122.5 (C-2"), 127.3 (C-4"), 142.2 (C-6"), 149.0 (C-7a"), 163.5 (C-4), 166.8 (CO).

(13) L. Mamlök, L. Lacombe, Bull. Soc. Chim. Fr., 1524, (1973).

(14) Only an analytical sample of the major isomer *cis* (±)-8 could be obtained in a satisfactory degree of purity; major isomer *cis* (±)-8: ¹³C-nmr (CDCl₃, 25 MHz) δ: 11.8 (CH₂CH₃), 20.6 (CH₂CH₃), 23.0 (C-2'), 28.6 (C-5), 34.1 (C-4), 39.9 (C-3), 51.4 (OCH₃), 53.4 (C-6), 55.1 (C-2), 59.5 (C-1'), 112.5 (C-3"), 114.7 (C-5"), 120.2 (C-3a"), 122.4 (C-2"), 127.1 (C-4"), 141.9 (C-6"), 149.0 (C-7a"), 173.7 (CO); minor isomer *trans* (±)-9: ¹³C-nmr (CDCl₃, 25 MHz) δ: 11.0 (CH₂CH₃), 23.2 (CH₂CH₃), 23.8 (C-2'), 31.8 (C-5), 37.3 (C-4), 38.4 (CH₂CO₂Me), 41.8 (C-3), 51.6 (OCH₃), 53.7 (C-6), 58.7 (C-2), 59.6 (C-1'), 112.4 (C-3"), 115.3 (C-5"), 120.2 (C-3a"), 122.1 (C-2"), 127.4 (C-4"), 142.8 (C-6"), 148.9 (C-7a"), 173.9 (CO).

(15) compound 12: ¹H-nmr (CDCl₃, 360 MHz) δ: 0.8 (m, J = 7.3 Hz, 3H, CH₃), 1.1-3.2 (m, 10H, 2 H-3, H-4, H-5, 2 H-6, CH₂CO₂CH₃, CH₂CH₃), 3.52-3.70 (m, 2 H-1', 2 H-2', OCH₃), 7.05 (dd, J = 5.2 and 4.7 Hz, H-5"), 7.16 (s, H-2"), 7.98 (dd, J 4.7 and 1.3 Hz H-4"), 8.28 (dd, H-6"), 9.90 (s, NH); ¹³C-nmr (CDCl₃, 25 MHz) δ: 11.8 (CH₂CH₃), 20.8 (CH₂CH₃), 23.1 (C-2'), 32.0 (C-4), 33.9 (C-3), 36.6 (CH₂CO₂Me), 38.0 (C-5), 48.2 (C-6*), 50.4 (C-1*), 51.8 (OCH₃), 111.5 (C-3"), 115.4 (C-5"), 120.2 (C-3a"), 122.6 (C-2"), 127.4 (C-4"), 142.8 (C-6"), 148.9 (C-7a"), 168.6 (C-2), 172.7 (CO); ¹H-nmr (CDCl₃, 360 MHz), compound 13 δ: 0.76 (m, J = 7.4 Hz, 3H, CH₃), 1.1-3.5 (m, 10H, 2 H-3, H-4, H-5, 2 H-6, CH₂CO₂CH₃, CH₂CH₃), 3.45-3.75 (m, 2 H-1', 2 H-2', OCH₃), 7.03 (dd, J = 5.2 and 4.7 Hz, H-5"), 7.16 (s, H-2"), 8.00 (dd, J 4.7 and 1.3 Hz H-4"), 8.28 (dd, H-6"), 10.10 (s, NH); ¹³C-nmr (CDCl₃, 25 MHz) δ: 10.9 (CH₂CH₃), 23.2 (C-2*), 23.3 (CH₂CH₃*), 33.8 (C-4), 38.1 (CH₂CO₂Me), 38.9 (C-5), 43.0 (C-3), 50.4 (C-1'), 51.7 (OCH₃), 53.4 (C-6), 111.5 (C-3"), 115.4 (C-5"), 120.2 (C-3a"), 122.6 (C-2"), 127.4 (C-4"), 142.8 (C-6"), 148.9 (C-7a"), 168.8 (C-2), 172.5 (CO)

(16) M. Ohba, T. Ohashi, T. Fujii, Heterocycles, 32, 319, (1991). T. Fujii, M. Ohba, S. Yoshifuji, Heterocycles, 27, 1009, (1988).

Received on September 1, 1997